Introducción: Al nacimiento, la circulación pulmonar pasa de un estado de alta a uno de baja resistencia, lo que implica el establecimiento de un nuevo balance entre vasoconstrictores y vasodilatadores. Un importante vasodilatador es NO, el que puede ser producido por la enzima eNOS. La falla de esta transición provoca un cuadro clínico llamado hipertensión pulmonar persistente, una de sus causas es hipoxia fetal crónica, observada en gestaciones a grandes altitudes. Se investigó si produce disminución de la expresión de eNOS en el pulmón.
Metodología: El estudio se realizó en fetos de oveja de 80 % de gestación, gestados a 520 o a 3600 m.s.n.m. Se midió la expresión de eNOS en extractos proteicos de pulmón mediante inmunoblot.
Resultados: No se observó diferencia significativa entre ambos grupos.
Conclusiones: La hipoxia crónica no produce cambios significativos sobre la expresión de eNOS en el pulmón de fetos de oveja a esta edad gestacional.
(1) Conx HE, Sacks EJ, Heymann MA, Rudolph AM. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol 1974; 120: 817-824.
(2) Abman SH, Stevens T. Perinatal pulmonary vasoregulation. Implications for the pathophysiology and treatment of neonatal pulmonary hypertension. En Haddad GG and Lister G, ed. Tissue Oxygen Deprivation. From Molecular to Integrated Function. New York: Marcel Dekker, Inc. pp 367-431, 1996.
(3) Abman SH. Abnormal vasoreactivity in the pathophysiology of persistent pulmonary hypertension of the newborn. Pediatr Rev 1999; 20: e103-e109.
(4) Ghanayem NS, Gorpon JB. Modulation of pulmonary vasomotor tone in the fetus and neonate. Respir Res 2001; 2: 139-144.
(5) Abman SH, Chatfield BA, Hall SL, McMurtry IF. Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am J Physiol 1990; 259: H1921-H1927.
(6) Moncada S, Hices A. The L-Arginine-Nitric Oxide Pathway. N Engl J Med 1993; 2002-12.
(7) Carrier GO, Fuchs LC, Winecoff AP, Giulumian AD, White RE. Nitrovasodilators relax mesenteric microvessels by cGMP-induced stimulation of Ca activated K channel. Am J Physiol 1997; 273: H76-H84.
(8) Hampl V, Huans JM, Wem EK, Archer SL. Activation of the cGMP-dependent protein kinase mimics the stimulatory effect of nitric oxide and cGMP on calcium-gated potassium channels. Physiol Res 1995; 44: 39-44.
(9) Lincoln TM, Cornwell TL. Towards an understanding of the mechanism of action of CAMP and cGMP in smooth muscle relaxation. Blood Vessels 1991; 28: 129-137.
(10) Archer SL, Huang JMC, Hampl V, Nelson DP, Shultz PJ, Weir EK. NO and cGMP cause vasorelaxation by activation of charybdotoxin-sensitive K channel by cGMP-dependent protein kinas. Proc Natl Acad Sci USA 1994; 91: 7583-7587.
(11) Mizuno S, Kapowaki M, Demura Y, Ameshima S, Miyamori I, Ismizaki T. P42/44 Mitogen-Activated protein kinase regulated by P53 and Nitric Oxide in human pulmonary arterial smooth muscle cells. Am J Respir Cell Mol Biol 2004; 2: 184-92.
(12) Fike CD, Aaschner JL, Zhang Y, Kaplowitz MR. Imparied no signaling in small pulmonary arteries of chronically hypoxic newborn piglets. Am J Physiol 2004; 286: L1244-L1254.
(13) Knowles RG, Moncada S. Nitric Oxide synthases in mammals. Biochem J 1994; 298: 249-58.
(14) Casanello P, Sobrevía L. Intrauterine growth retardation is associated with reduced activity and expression of the cationic amino acid transport systems y+/hCAT-1 and y+/hCAT-2B and lower activity of nitric oxide synthase in human umbilical vein endothelial cells. Cir Res 2002; 91: 127-134.
(15) Chicoine LG, Paffett ML, Young TL, Nelin LD. Arginase inhibition increases nitric oxide production in bovine pulmonary arterial endothelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 287(1): L60-8.
(16) Halbower A, Tuder RM, Franklin WA, Pollock JS, Forstermann U, Abman SH. Maturation-related changes in endothelial NO synthase immunolocalization in the developing ovine lung. Am J Physiol 1994; 267: L585-L591.
(17) González A, Montecinos S G. Hipertensión pulmonar. En: Pediatria Menenghello. Ed. Médica Panamericana. Buenos Aires, 1997; 1488-1492.
(18) Agusti AG, Rodríguez-Roisin R. Effect of Pulmonary hypertension on gas echange. Eur Respir J 1993; 6(9): 1371-7.
(19) Stoll BJ, Kliegman RM. El feto y el Recién nacido. En: Nelson Tratado de Pediatría. Ed. Mc Graw-Hill Interamericana. Madrid, 2001; 541-542.
(20) Warre CR, Hao X, Pearce WJ. Madurational differences in soluble guanylate cyclase activity in ovine carotid and cerebral arteries. Pediatr Res 2000; 47(3): 369-75.
(21) Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utiliing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-54.
(22) Penin F, Archinard P, Moradi-Ameli M, Godinot C. Stoichiometry of the oligomycin-sensitivity-conferring protein (OSCP) in the mitochondrial FOF1-ATPase determined by an immunoelectrotransfer blot technique. Biochim Biophys Acta 810(3): 346-53.
(23) Zar JH. Multiple comparisons. In: Biostatistical Analysis, 2nd Ed. Englewood Cliffs, NJ: Prentice-Hall; 1984; 185-205.
(24) Shedata SM, Sharma HS, Mool WJ, Tibboel D. Pulmonary hypertension in human newborns with congenital diaphragmatic hernia is associated with decreased vascular expression of nitric-oxide synthase. Cell Biochem Biophys 2006; 44(1): 147-55.
(25) Hoehn T, William M, McPhaden AR, Stannigel H, Mayatepek E, Wadsworth RM. Endothelial, inducible and neuronal nitric oxide synthase in congenital pulmonary Iymphangiectasia. Eur Respir J 2006; 27(6): 1311-5.
(26) Coulet F, Nadaud S, Agrapart M, Soubrier F. Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promote. J Biol Chem 2003; 278(47): 46230-40.
(27) Chicoine LG, Avitia JW, Deen C, Nelin LD, Earley S, Walker BR. Developmental differences in pulmonary enos expression in response to chronic hypoxia in the rat. J Appl Physiol 2002; 93(1): 311-8.
(28) Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol 2003; 284: R1-12.