El conocimiento detallado de aquellos factores que presentan mayor relevancia en la probabilidad de venta de las viviendas puede resultar de suma importancia al tratarse de una inversión a largo plazo. Tras identificar una serie de bloques que marcan la evolución de la venta de las mismas (las características internas del inmueble en cuestión, su localización, su grado de sobreprecio y, sobre todo, un interés real por parte del comprador), se presenta un estudio novedoso que modeliza la probabilidad de venta de los inmuebles a lo largo del tiempo mediante técnicas de machine learning aplicadas a problemas de supervivencia, logrando valores de C-index de 76% y 72% en chalés y pisos, respectivamente. El proceso metodológico se ha testado sobre la capital de España, Madrid, a partir de los datos recopilados desde la principal plataforma de mercado del país durante el periodo 2018-2019. Estos datos fueron ponderados según información oficial, pero la metodología es escalable a cualquier municipio. No solo vendedores, compradores o intermediarios pueden verse beneficiados con este aporte, sino también los agentes públicos, de cara a tomar decisiones enfocadas al diseño o prevención en el tema de la vivienda.
Ahmed, A., Ardila, D., Sanadgol, D., y Sornette, D. (2016). Comparing ask and transaction prices in the Swiss housing market. Swiss Finance Institute Research Paper Series, (16-80). https://doi.org/10.2139/ssrn.2894404
An, Z., Cheng, P., Lin, Z., y Liu, Y. (2013). How do market conditions impact price-TOM relationship? Evidence from real estate owned (REO) sales. Journal of Housing Economics, 22(3), 250-263. https://doi.org/10.1016/j.jhe.2013.07.003
Anglin, P. M., Rutherford, R., y Springer, T. M. (2001). The trade-off between the selling price of residential properties and time-on-the-market: The impact of price setting. The Journal of Real Estate Finance and Economics, 26, 95–111. https://doi.org/10.1023/A:1021526332732
Ayuntamiento de Madrid. (2020). Compra-venta de viviendas. https://www.madrid.es/portales/munimadrid/es/Inicio/El-Ayuntamiento/Estadistica/Areas-de-informacion-estadistica/Edificacion-y-vivienda/Mercado-de-la-vivienda/Compra-venta-de-viviendas/?vgnextfmt=default&vgnextoid=9b8db9602f841510VgnVCM1000000b205a0aRCRD&vgnextchannel=22613c7ea422a210VgnVCM1000000b205a0aRCRD
Baldominos, A., Blanco, I., Moreno, A. J., Iturrarte, R., Bernárdez, Ó., y Afonso, C. (2018). Identifying real estate opportunities using machine learning. 8(11), 2321. https://doi.org/10.3390/app8112321
Bhuiyan, M. y Hasan, M. (2016). Waiting to be sold: Prediction of time-dependent house selling probability. 2016 IEEE 3rd International Conference on Data Science and Advanced Analytics (DSAA), 468-477. https://doi.org/10.1109/DSAA.2016.58
Bich, H. N., Trong, H. N., y Thanh, H. T. (2020). The role of listing price strategies on the probability of selling a house: Evidence from Vietnam. Real Estate Management and Valuation, 28(2), 63-75. https://doi.org/10.1515/remav-2020-0016
Chen, Y. y Rosenthal, R. W. (1996). On the use of ceiling-price commitments by monopolists. The RAND Journal of Economics, 27(2), 207-220. https://www.jstor.org/stable/2555923
Choy, L. H. T. y Ho, W. K. O. (2023). The use of machine learning in real estate research. Land, 12(4), 740. https://doi.org/10.3390/land12040740
Cirman, A., Pahor, M., y Verbic, M. (2015). Determinants of time on the market in a thin real estate market. Engineering Economics, 26(1). https://doi.org/10.5755/j01.ee.26.1.3905
Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodological), 34(2), 187-202. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
Deville, J.-C., Särndal, C.-E., y Sautory, O. (1993). Generalized raking procedures in survey sampling. Journal of the American Statistical Association, 88(423), 1013-1020. https://doi.org/10.1080/01621459.1993.10476369
Eurostat. (2019). Distribution of population by tenure status, type of household and income group - EU-SILC survey [datos]. https://ec.europa.eu/eurostat/databrowser/view/ilc_lvho02/default/table?lang=en
Forgey, F. A., Rutherford, R. C., y Springer, T. M. (1996). Search and liquidity in single‐family housing. Real Estate Economics, 24(3), 273-292. https://doi.org/10.1111/1540-6229.00691
Geltner, D., Kluger, B. D., y Miller, N. G. (1991). Optimal price and selling effort from the perspectives of the broker and seller. Real Estate Economics, 19(1), 1-24. https://doi.org/10.1111/1540-6229.00537
Genesove, D. y Mayer, C. (1997). Equity and time to sale in the real estate market. The American Economic Review, 87(3), 255-269.
Glower, M., Haurin, D. R., y Hendershott, P. H. (1998). Selling time and selling price: the impact of seller motivation. Real Estate Economics, 26(4), 719-740. https://doi.org/10.1111/1540-6229.00763
Ministerio de Transportes y Movilidad Sostenible. (2023). Transacciones inmobiliarias (compraventa) [datos]. https://apps.fomento.gob.es/BoletinOnline2/?nivel=2&orden=34000000
Han, L. y Strange, W. C. (2016). What is the role of the asking price for a house? Journal of Urban Economics, 93, 115-130. https://doi.org/10.1016/j.jue.2016.03.008
Harrell, F., Califf, R., Pryor, D., Lee, K., y Rosati, R. (1982). Evaluating the yield of medical tests. JAMA, 247(18), 2543-2546. https://doi.org/10.1001/jama.1982.03320430047030
Haurin, D. (1988). The duration of marketing time of residential housing. Real Estate Economics, 16(4), 396-410. https://doi.org/10.1111/1540-6229.00463
Instituto Nacional de Estadística. (2002a). Cambios metodológicos EPA-2002. Cifras INE. Boletín Informativo del Instituto Nacional de Estadísticas, (3). https://www.ine.es/epa02/cifrasine_epa02.pdf
Instituto Nacional de Estadística. (2002b). Método de reponderación aplicado en la EPA. https://www.ine.es/epa02/documento_tecnico.pdf
Instituto Nacional de Estadística. (2019). Hogares por régimen de tenencia de la vivienda y tipo de hogar. Autor. https://www.ine.es/jaxiT3/Tabla.htm?t=9996&L=0
Instituto Nacional de Estadística. (2023a). Estadística de transmisiones de derechos de la propiedad. Compraventa de viviendas según régimen y estado. Autor. https://www.ine.es/jaxiT3/Tabla.htm?t=6150&L=0
Instituto Nacional de Estadística. (2023b). Series históricas de población desde 1996. Cifras oficiales de la Revisión anual del Padrón municipal a 1 de enero de cada año. Autor. https://www.ine.es/jaxiT3/Tabla.htm?t=29005&L=0
International Valuation Standards Council. (2022). International valuation standards. Autor. https://www.rics.org/content/dam/ricsglobal/documents/standards/ivsc_effective_31_jan_2022.pdf
Johnson, K., Benefield, J., y Wiley, J. (2007). The probability of sale for residential real estate. Journal of Housing Research, 16(2), 131-142. https://doi.org/10.1080/10835547.2007.12091978
Kang, H. B. y Gardner, M. J. (1989). Selling price and marketing time in the residential real estate market. Journal of Real Estate Research, 4(1), 21-35. https://doi.org/10.1080/10835547.1989.12090570
Kaplan, E. L. y Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282), 457-481. https://doi.org/10.1080/01621459.1958.10501452
Khezr, P. (2015). Time on the market and price change: the case of Sydney housing market. Applied Economics, 47(5), 485-498. https://doi.org/10.1080/00036846.2014.972549
Kleinbaum, D. y Klein, M. (1996). Survival analysis: a self-learning text. Springer.
Knight, J. R. (2002). Listing price, time on market, and ultimate selling price: Causes and effects of listing price changes. Real Estate Economics, 30(2), 213-237. https://doi.org/10.1111/1540-6229.00038
Lazear, E. (1986). Retail pricing and clearance sales. The American Economic Review, 76(1), 14–32.
Li, W.-F. (2015). The impact of pricing on time-on-market in high-rise multiple-unit residential developments. Pacific Rim Property Research Journal, 10(3), 305-327. https://doi.org/10.1080/14445921.2004.11104165
Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemotherapy Reports, 50(3), 163-70.
McCall, J. J. y Lippman, S. A. (1984). An operational measure of liquidity. University of Konstanz, Department of Economics.
Ngai, L. y Tenreyro, S. (2014). Hot and cold seasons in the housing market. The American Economic Review, 104(12), 3991–4026.
Oxford Spring School. (2007). An introduction to event history analysis. https://spia.uga.edu/faculty_pages/rbakker/pols8501/OxfordTwoNotes.pdf
Pölsterl, S. (2020). scikit-survival: A library for time-to-event analysis built on top of scikit-learn. Journal of Machine Learning Research, 21(212), 1–6.
Quan, D. C. y Quigley, J. M. (1991). Price formation and the appraisal function in real estate markets. The Journal of Real Estate Finance and Economics, 4(2). https://doi.org/10.1007/bf00173120
Scofield, D. y Devaney, S. (2017). What sells in a crisis? Determinants of sale probability over a cycle and through a crash. Journal of Property Investment & Finance, 35(6), 619-637. https://doi.org/10.1108/jpif-02-2017-0013
Selcuk, C. (2012). Motivated sellers predatory buyers. Munich Personal RePEc Archive. https://mpra.ub.uni-muenchen.de/36226/
Vergara-Perucich, J. (2021). Precios y financierización: evidencia empírica en mercado de la vivienda del Gran Santiago. Revista INVI, 36(103), 137–166. https://doi.org/10.4067/S0718-83582021000300137